RIAM Workshop, December 12-13, 2012

Oceanographic Radars in Korea

Sang-Ho Lee Kunsan National University, Korea

Outline

- 1. Background and Brief History
- 2. Radar Systems and Sites
- **3. Major Scientific Results** (KNU, KORDI and KHOA)
- 4. Activities & Future Plans of Radar Community

* Research & Public Demands for Oceanographic Radar Network Development

Scientific demand: current system & variations
YS : weak and variable circulation but strong tidal currents off the west coast of Korea
EJS : strong boundary currents such as EKWC and NKCC with active eddies in polar front region
KS and ECS : TWC, JWC pass into the YS and EJS

Public demand: Operational Application

- Heavy traffics of transport in major ports
- Naval activities near NLL area (CheonAn warship)

Herbei

Sprits II

- Frequent oil spill accidents (Herbei Sprits II, 2009)
- Large coastal developments in the west coast
- Increase of coastal leisure activity, pollution, fisheries

Brief History

- 1992: SeaSonde radar trial test near the Keum River Estuary (CORDAR)
- 1999: 1st operation by Prof. Jae-Chul Lee (Pukyong National University)
- 2002: KNU measured current off N. Saemangeum Dyke (SD) by HF radars
- 2003-2004: KHOA measured surface currents for Incheon port transport
- 2004: KHOA began to construct Yeosu site for GwangYang port transport
- 2006: SNU begun HF radar operation in east coast of Korea
- 2008: KORDI added 2 radars in S. SD region, cooperating with KNU
- 2010: KORDI measured the JWC in Jeju Strait by 2 Seasonde units
- 2011: KHOA constructed Busan New Port site with triple nested 6 radars
- 2011 (Nov. 4th): KORF (Korea Ocean Radar Forum) was founded
- 2012 : MIT installed 2 phased-array type (WERA) radars in the east coast
- 2012 (May 17-18th): 1st ORCA meeting in Seoul, organized by KORF

2. Radar Systems and Sites

* 25 ocean radar systems in Korea (5Mhz: 1, 13Mhz: 7, 25 MHz:13, VHF 4)

Owner	Site	Radar No	Freq.	BW	Range	∆t	Main purpose
	YB	2	44 MHz	300 kHz	15 km	0.5 hr	Operational for shipping &
КНОА		2	25 MHz	200 kHz	30 km	0.5 hr	navigational safety
	BNP	2	44 MHz	500 kHz	9 km	1 hr	Operational for shipping &
		2	25 MHz	150 kHz	30 km	1 hr	navigational safety
		2	13 MHz	50 kHz	90 km	1 hr	Monitoring of TWC
	BRI	2	25 MHz	150 kHz	30 km	1 hr	Operationa l for naval activity (NLL)
KNU &	KRE	3	25 MHz	100 kHz	45 km	1 hr	Monitoring of current changes
KIOST	SD	2	25 MHz	100 kHz	45 km	1 hr	plumes from river and dyke sluices
KIOST	JS	2	13 MHz	50 kHz	90 km	1 hr	Jeju Warm Current monitoring
SNU	ECS	3	13 MHz	50 kHz	90 km	1 hr	EKWC & NKCC mapping
		1	5 MHz	30 kHz	150 km	1 hr	Frequency and operation test
MIT*	ECM	2	25 MHz	150 kHz	50 km	0.5 hr	Current and wave mapping (WERA Phased Array system)

KHOA: Korea Hydrographic and Oceanographic Administration

KIOST: Korea Institute of Ocean Science and Technology (Old name is KORDI)

KNU: Kunsan National University, SNU: Seoul National University

MIT: Marine Information Technology Co.

TWC: Tsushima Warm Current, EKWC: East Korean Warm Current, NKCC: North Korean Cold Current

Each network except for KRE and SD sites gathers and archives data individually. The current maps are provided near real-time by KHOA and KNU Web sites.

3. Major Scientific Results

3.1. Keum River Estuary & Saemangeum Dyke [KNU + KIOST]

• M₂ tidal current change by the northern Saemangeum dyke construction

• Surface current variation off the southern dyke (June 2010, all gates were opened)

Response of subtidal surface current to wind and outflow plume in summer 2010

Complex Correlation between wind and subtidal frequency current vectors

Off the Saemangeum Dyke after the dyke completion in summer

-80

HF_U Com.(cm/s)

HF_V Com.(cm/s)

• Data gap filling: Objective Interpolation (Kim et al. 2007, Hwang et al. 2010)

Objective mapping to fill up data gap (Kim et al. 2007; Hwang et al. 2011)

1. Using Sample Covariance

- $\underline{D} = (COV_{dm})^T (COV_{dd})^{-1} \underline{d}$
- <u>*d*</u>: the observed demeaned current vectors,

 $COV_{dm} = C(\mathbf{x}, \mathbf{x}')$; covariance of observed currents $COV_{dd} = C(\mathbf{x}, \mathbf{x}') + R$,

 $R = \lambda^2 I$; regulation matrix

 $\lambda^2 = 49 \text{ cm}^2/\text{s}^2$ was used (10% of averaged COV_{dm})

- Expected uncertainty of $\underline{D} \sim 7$ cm/s

- 2. Using Smoothed (homogeneous) Covariance with localization $\overline{\rho}(\Delta X) = \frac{\sum_{\forall X} N(X, X + \Delta X) \rho(X, X + \Delta X)}{\sum_{\forall X} N(X, X + \Delta X)} = \begin{bmatrix} \overline{\rho_{uu}} & \overline{\rho_{uv}} \\ \overline{\rho_{vu}} & \overline{\rho_{vv}} \end{bmatrix}$ Sample Mean Correl. Coeff. $C_{sm}^{G}(X, X') = \overline{\rho}(\Delta X) \overline{\sigma}(X) \overline{\sigma}(X')$ $\overline{\sigma}(\mathbf{x}) = \begin{bmatrix} \overline{\sigma}_{u}(\mathbf{x}) \\ \overline{\sigma}_{v}(\mathbf{x}) \end{bmatrix}$ Sample Mean STD where $G = \exp\{-[(\Delta X)^{2} + (\Delta Y)^{2}]/2k^{2}\}$ is Gaussian Function
- **3. Using Fitted mean Covariance** (for correlation coeff.) $C_{ft}(X,X') = f(\Delta X)\overline{\sigma}(X)\overline{\sigma}(X')$

where $f(\Delta X) = \exp[-[a(\Delta X)^2 + b(\Delta X)(\Delta Y) + c(\Delta Y)^2]^d]$ is a fitting function of sample mean correl. coeff.

Examples of Objective Mapping

3.2 Jeju Strait [KIOST]

Jeju Warm Current Observation

- HF radar in Jeju Strait
 - 13 MHz HF-Radar (SeaSonde)
 Aewol: 13.415MHz
 Kimnyung: 13.470MHz
 (Band width: 50kHz)
 - Max range: 80 km
 - Range resolution: 3 km
 - Angular resolution: 5 deg.
 - Time interval : 60 minute
- Temporal coverage
 - More than 80% in range of 60km
- ADCP mooring for validation- 300kHz ADCP

HF radar sites and percent temporal coverage

Validation of HF-Radar

 \diamond Comparison with buoy-moored ADCP

- Correlation coeff. : u-comp: 0.85, v-comp: 0.15
- RMS difference : u: 18.16 cm/s, v: 18.99 cm/s

V comp.

Monthly Mean Surface Current 2012

3.3 Yeosu Bay and Busan New Port sites [KHOA]

• Yeosu Bay (YB site) : Operational to support the navigation & transport (GwangYang Port)

Yeosu Expo

(http://www.khoa.go.kr/koofs/kor/observation/obs_real_map.asp)

✓ Tidal Current Ellipses

• Busan New Port and Korea Channel (BNP site, triple multi-static, 44, 25, 13 MHz) : **Operational for navigation & transport + Monitoring of TWC** Monthly Mean Current 128° 40' E 129° 00' E 129°20' E August 2012 **HOA** 0.25m/s 05:00, Thur. Dec. 29, 2011 $\rightarrow 0.5 \text{ m/s}$ a) 35° 00' N Cho 35° N GeoJae-Do 34[°]40' N sushima Island 35°40 Low tide at Busan (Moon's age 5d) Island 50 128° 40' 129°00' 129° 20' E M₂ Current Ellipse 35 N C) 34.8 High tide at Busan (Moon's age 34.6 13d) Tsushima Island #18 20 cm/ 128.6 128.8 129 129.2 129.4E

2012/03/05 05:00:00

4. Radar community Activities & Future Plan

- KORF (Korea Ocean Radar Forum)
 - 1st ORCA, May 17-18, Seoul, Korea
 - Special edition of OSJ (Mar. 2013)
 - Annual Meeting for Scientist

• KHOA

- Adding 2-4 radars/year to increase spatial coverage of current measurement

• ETRI

- HF frequency allocation & Field survey for inference problem

✤ Future Plan

- ✓ Workshop to foster Tech. community and student training
- ✓ Establish Nation-wide HF radar Network with long range
 + Data Portal
- \checkmark Development of software program for operational and emergency response

Thank You for Your Attention !

Questions and Comments !

• Mean Surface Current by Wind + Outflow plumes + Coast line change

M₂ Tidal Current Ellipse

1) Effect of outflows when no winds

- Outflow inertia appears in 10 ~13 km from the sluices.
- Outflows contributed to the northward current development in the outer bay.

2) Effect of wind forcing when no discharge

Distributions of subtidal surface current driven by weak westerly (a), northeasterly (b) and southerly wind (c) when the all gates were closed.

3) Effects of Southerly Winds + Outflows